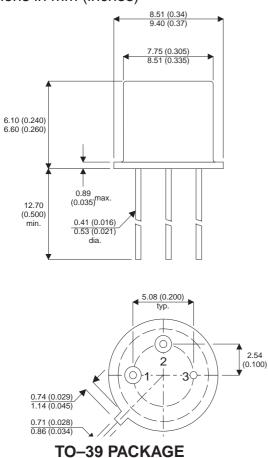


2N5784

SILICON EPITAXIAL

NPN TRANSISTOR


General purpose power transistor for switching and linear applications in a

hermetic TO-39 package.

FEATURES

MECHANICAL DATA

Dimensions in mm (inches)

PIN 1 – Emitter PIN 2 – Base PIN 3 – Collector

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise stated)

			/		
V _{CBO}	Collector – Base Voltage		80V		
V _{CER(sus)}	Collector – Emitter Sustainir	80V			
V _{CEO(sus)}	Collector – Emitter Sustainir	65V			
V _{EBO}	Emitter – Base Voltage	5V			
I _C	Continuous Collector Currer	3.5A			
I _B	Continuous Collector Currer	1A			
P _D	Total Device Dissipation	$T_A = 25^{\circ}C$	10W		
		Derate above 25°C	0.057W/°C		
P _D	Total Device Dissipation	$T_{C} = 25^{\circ}C$	1W		
_	Derate above 25°C		0.0057W/°C		
T _J , T _{STG}	Operating Junction and Stor	–65 to +200°C			
TL	Lead temperature, $\geq 1/32$ " (0.8	230°C			
			·		

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise stated)

	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
I _{CER}	Collector Cut-off Current	$V_{CE} = 65V$				10	μΑ
		R _{BE} = 100Ω	T _C = 150°C			1	mA
I _{CEX}	Collector Cut-off Current	V _{CE} = 75V	V _{BE} = -1.5V			10	μΑ
		R _{BE} = 100Ω	$T_{\rm C} = 150^{\circ}{\rm C}$			1	mA
I _{CEO}	Collector Cut-off Current	$V_{CE} = 50V$	I _B = 0			100	μΑ
I _{EBO}	Emitter Cut-off Current	V _{BE} = -5V	$I_{\rm C} = 0$			10	μΑ
h _{FE*}	DC Current Gain	$V_{CE} = 2V$	$I_{\rm C} = 1$ A	20		100	
		$V_{CE} = 2V$	I _C = 3.2A	4			
V _{CEO(sus)*}	Collector – Emitter Sustaining Voltage ¹	I _C = 100mA	$I_{B} = 0$	65			V
V _{CER(sus)*}	Collector – Emitter Sustaining Voltage ¹	I _C = 100mA	$R_{BE} = 100\Omega$	80			
V _{BE}	Base – Emitter Voltage	$V_{CE} = 2V$	$I_{\rm C} = 1$ A			1.5	V
V _{CE(sat)}	Collector – Emitter Saturation Voltage ²	I _C = 1A	I _B = 100mA			0.5	v
h _{fe}	Small Signal Common – Emitter	$V_{CE} = -2V$	I _C = 100mA	5		20	-
	Current Gain	f = 200kHz		5		20	
h _{fe}	Small Signal Common – Emitter	$V_{CE} = 2V$	I _C = 100mA	05			
	Current Gain	f = 1kHz		25			
t _{ON}	Turn-on Time	V _{CE} = 30V	$I_{\rm C} = 1$ A			5	
t _{OFF}	Turn-off Time	I _{B1} = I _{B2} = 100mA				15	μs
$R_{\theta JC}$	Thermal Resistance Junction – Case				17.5	°C/W	
R_{\thetaJA}	Thermal Resistance Junction – Ambient	Resistance Junction – Ambient				17.5	0,00

NOTES

- * Pulse Test: $t_p = 300 \mu s$, $\delta = 1.8\%$.
- 1) These tests *MUST NOT* be measured on a curve tracer.
- 2) Measured $\frac{1}{4}$ " (6.35 mm) from case. Lead resistance is critical in this test.
- 3) Measured at a frequency where $|h_{fe}|$ is decreasing at approximately 6dB per octave.

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.